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Abstract

We present and test a numerical method which, given an analytical or numerical solution of the Helmholtz equation

in a neighborhood of a fixed observation point and assuming that the geometrical optics approximation is relevant,

determines at this point the number of crossing rays and computes their directions and associated complex amplitudes.
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1. Introduction

We start with the derivation of the geometrical optics (GO) model (see [7] for more details including the

geometrical theory of diffraction (GTD)). Let ukðxÞ be the solution of the Helmholtz equation

Duk þ k2g2uk ¼ 0; ð1Þ

supplemented by suitable boundary and radiation conditions. The coefficient g ¼ gðxÞ is the index of re-

fraction and k ¼ 2p=k0 is the wavenumber where k0 is the reference wavelength. In its simplest form,

geometrical optics relies on the assumption that the complex valued solution ukðxÞ can be approximated,

asymptotically in k, by the ‘‘ansatz’’

ukðxÞ ’ AðxÞeik/ðxÞ; ð2Þ

where the amplitude AðxÞ and the phase /ðxÞ are frequency independent real valued smooth solutions of the

Eikonal/transport GO system of equations,

jr/j ¼ g; 2r/ � rAþ AD/ ¼ 0: ð3Þ

We will always assume that the amplitude AðxÞ is positive. This analysis relies on the following intuitive

idea: when the wavelength is much smaller than the scale of variations of the index of refraction gðxÞ
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characterizing the medium, the solution locally behaves as an elementary plane wave. Indeed, as A and /
are assumed to be smooth, a first order approximation around x0 gives the local plane wave approximation

ukðxÞ ’ Bðx0Þeikðx�x0Þ�r/ðx0Þ; ð4Þ

where we denote Bðx0Þ ¼ Aðx0Þeik/ðx0Þ the ‘‘complex amplitude’’.

Classically, system (3) is solved by the method of characteristics, called ‘‘rays’’ in this context; the rays

are the integral curves of the vector field r/ and thus follow the ‘‘local’’ plane wave directions r/ðx0Þ.
Note that in the GTD the A coefficient may depend on k (we treat such a case in Section 3.5.3).

The ray field is of course computed independently of r/ and general solutions may exhibit an arbitrary

number of crossing rays (due to reflection, diffraction, fold or other collapse phenomena). The ansatz (2) is

then not relevant and more sophisticated mathematics are needed (see [13] for instance). Away from

caustics and focus points the situation simplifies, and the relevant asymptotic theory consists in locally

approximating the solution as a superposition of a finite number N of elementary ansatz of type (2)

ukðxÞ ’
XN
n¼1

AnðxÞeik/nðxÞ: ð5Þ

The number of elementary contributions and their coefficients /n and An depend on the number of rays
crossing at x and their associated phases and amplitudes. See [3,14] for a short presentation of geometrical

optics and a discussion about the associated concept of multi-valued solutions to (3).

In this paper we will use the geometrical optics approximation (5) in its plane wave approximate form (4)

ukðxÞ ’
XN
n¼1

Bnðx0Þeikðx�x0Þ�r/nðx0Þ; ð6Þ

where Bnðx0Þ ¼ AnðxÞeik/nðx0Þ, and consider the following inverse problem:

Given an analytical or numerical solution ukðxÞ in a neighborhood of a fixed observation point x0, deter-
mine the number of rays N crossing at x0 and compute the GO quantities ðBn;r/nÞ for n ¼ 1; . . . ;N .

As an illustration, the left part of Fig. 1 shows the modulus of a Helmholtz solution made up of a sum of

two circular waves in homogeneous space. The right part of the figure shows the associated ray directions

r/n at a finite number of observation points forming a grid: each point is passed by two rays issued from

the sources.

The general motivation for this problem is to reduce the complexity, and cost, of many numerical

problems by being able to move from a detailed description to a description only involving the smooth
functions AnðxÞ and /nðxÞ, which can be represented by a fixed number of unknowns, independent of the
Fig. 1. Translating a Helmholtz solution to rays.
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frequency, and which can be processed via the ‘‘coarse scale’’ geometrical optics Eq. (3). The applications

we have in mind include:

• Hybrid solvers in which the Helmholtz equation is solved in some (complicated) parts of the domain and
geometrical optics are used in the other parts to reduce computational costs. This technique is often used

in computational electromagnetics (CEM), see e.g. [2,8,18,20,29,33] amongst others. The same idea ap-

plies to domain decomposition methods where there is a coupling between domains in which the Helm-

holtz equation is solved and domains where ray tracing is used. Another potential application would be

to use this method to construct absorbing boundary conditions for the Helmholtz equation.

• Different methods dealing with the construction of Galerkin methods for wave type equations based on

‘‘GO’’ basis functions [1,9,12,16]. The possibility to analyze a local high frequency field could be helpful

either for error estimations or even the construction of ad-hoc preconditioners.
• The method can also provide useful information on the relevance of the GO approximation of the so-

lution. As the GO solution is frequency independent (except for diffraction phenomena), the quality of

the GO output of our algorithm increases with the frequency and therefore it can detect the frequency

threshold where one can use the GO quantities to extrapolate the Helmholtz solution further, c.f. com-

ment in Section 3.4.

• As a restriction/compression operator in coarse timestepper based or heterogeneous multiscale methods

for wave problems [19,34]. In these methods one needs to explicitly convert local detailed descriptions

into a global coarse description. The opposite conversion, lifting/reconstruction, can be trivially per-
formed by just evaluating the expression in (6).

• When considering electromagnetic fields generated by one or more antenna, this problem is called Di-

rection of Arrival (DOA) estimation in the signal processing community. It is either solved by parametric

fitting assuming some knowledge of the impinging signal (MUSIC algorithm [31]) or by exploiting the

phase shift in the propagation model in the case of a linear array of antennas (ESPRIT algorithm [32]).

For scattering problems, one possible solution to our inverse problem when the observation point is far

from the scatterer is to use a far-field approximation. Let C be a closed curve including either a scatterer or

some heterogeneities. When C is small enough compared to the wavelength, the interior domain can be
interpreted as one single point source. GO rays can be considered as flowing isotropically from the scat-

tering zone and the far field prescribes the amplitude as a function of the directions. This approach is only

accurate quite far from C though. The distance D and the scatterer size d must satisfy kd2 � D and d � D,
and it cannot capture crossing rays in the vicinity of C.

Another natural idea is to analyze the restriction of uk on a surface or an interface, in terms of some

functions that have a simple ray interpretation. A Fourier transform for instance will directly provide a

plane wave analysis (possibly after pre-processing). In GO, a plane wave is just a family of parallel rays that

sweep the domain in a prescribed direction. A more sophisticated version of this approach uses a de-
composition in Gaussian beams [27,28].

One could also consider this problem using Huygen’s principle, which is perhaps the most common

approach in CEM. It can be understood using the integral form of the solution,

ukðxÞ ¼
Z
C
Ukðx; yÞ

ouk
om

ðyÞ � oUkðx; yÞ
omðyÞ ukðyÞdsðyÞ; ð7Þ

outside any closed curve C. Typically, the curve is also in this case the boundary of a scatterer or a pen-

etrable heterogeneous local zone. The function Ukðx; yÞ is the free space Green function which can be in-

terpreted as a circular (spherical in 3-D) wave emanating from the point y,

Ukðx; yÞ ’
eikjx�yj

jx� yj
d�1
2

; jx� yj � 1;
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in dimension d. The normal derivative of Ukðx; yÞ behaves similarly. Upon approximating the integral

(7) with a sum, we obtain a solution of the form (5). We can think of this as splitting the curve C
into small pieces, each considered as a secondary source from which rays are propagated in all
directions.

One must realize though that these methods do not directly give the high frequency approximation

of the solution in the sense of (5) but rather the high frequency approximation of an ‘‘interpretation’’

of the solution in terms of secondary sources. They rely on cancellation effects between nearby sources

and therefore a significant number of rays must be used to get an accurate approximation, the number

increasing with the frequency. For example, a plane wave could be approximated by a sum of circular

waves, but for fixed accuracy the number N of such waves would have to be of the order k. In

contrast, for the high frequency approximation a plane wave would have N ¼ 1 independent of k. Note
also that the integral form (7) and the far field approximation are only valid where the medium is

homogeneous.

In this paper, we propose an algorithm that really achieves the above local inverse problem and the

cost of the algorithm is frequency independent. By ‘‘local’’ we mean that we only need the Helmholtz

solution in a neighborhood of the ‘‘observation’’ point for a (sufficiently large) fixed k to obtain the

‘‘exact’’ GO asymptotic interpretation of the solution (i.e. the GO solution as if it had been globally

computed using an asymptotic GO model). Our method works both for homogeneous and inhomoge-

neous problems. It essentially relies on the study of the restriction of the solution to a small circle around
each point we want to analyze. More precisely, if a is some given positive number, we construct the

function

Ua : ŝ ! uk x0

�
þ a
kgðx0Þ

ŝ
�
;

where ŝ runs over the circle (2-D case) or the sphere (3-D case) of radius one. In other words, we will

analyze the wave at some points on a circle (or a sphere) centered at x0 whose radius is a=2p times the

wavelength measured at x0. Analyzing locally a function along some given directions is known as a mi-

crolocal analysis (in a broader sense however than what is called precisely microlocal analysis in the

mathematical analysis field). Our goal therefore is to synthesize all significant microlocal directions, whence

the title of this paper. From the knowledge of the function Ua, we will show that it is possible to recover

numerically some information about the number of rays crossing at x0 as well as their complex amplitudes
and directions.

1.1. Outline

After stating the ‘‘numerical microlocal’’ formulation of the problem and the filtering procedure based

on the Jacobi–Anger formula in Section 2, we detail the 2-D algorithm and present numerical results in

Section 3. Section 4 presents the 3-D extension.
2. Numerical microlocal analysis

2.1. General setting

In this section, we assume that the values of the solution around the point at which we look at are

directly available, either in analytic form or after some interpolation procedure if the solution has been

computed using, for instance, a finite element or finite difference method. A separate analysis based on
Herglotz waves is being investigated when the solution comes from an integral equation.
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Let x0 be some point in the space and ukðxÞ a solution to the Helmholtz equation with wave number k in

the neighborhood of x0. We assume that there exists some integer N and some phase functions and am-

plitudes, /nðxÞ and AnðxÞ, n ¼ 1; . . . ;N , such that

ukðxÞ ’
XN
n¼1

AnðxÞeik/nðxÞ; ð8Þ

when jx� x0j is small. The phase functions are assumed to satisfy the Eikonal equation

r/nðxÞj j ¼ gðxÞ;
in the domain where this nth branch of the phase family exists and contributes to the global GO solution.

Henceforth, we will denote by d̂nðxÞ the direction of propagation of the rays

r/nðxÞ ¼ gðxÞd̂nðxÞ:
We consider the Helmholtz solution for wave number k on a circle or a sphere of radius a=kgðx0Þ around

the point x0. Thus, the parameter a is the radius scaled by the wavelength divided by 2p. We define

UaðŝÞ :¼ uk x0

�
þ a
kgðx0Þ

ŝ
�
: ð9Þ

This is a function whose argument varies on the unit circle or the unit sphere. The function Ua also depends

on k and on x0 but since these parameters will be kept fixed in the remaining discussion, we do not make the
dependence explicit in the notation to enhance readability. Using the Taylor expansions,

/nðxÞ ¼ /nðx0Þ þ r/nðx0Þ � ðx� x0Þ þ � � �
¼ /nðx0Þ þ gðx0Þd̂nðx0Þ � ðx� x0Þ þ � � �

AnðxÞ ¼ Anðx0Þ þ � � � ;
ð10Þ

we see that by (8), we have

UaðŝÞ ’
XN
n¼1

Anðx0Þeik/nðx0Þ eia ŝ�d̂nðx0Þ; ð11Þ

which will be processed under the following form:

U ray
a ð̂sÞ :¼

XN
n¼1

Bnðx0Þeia ŝ�d̂nðx0Þ; ð12Þ

where Bnðx0Þ ¼ Anðx0Þeik/nðx0Þ is the ‘‘complex amplitude’’ at x0. Note that for large k, the function Bnðx0Þ is a
highly oscillating function of x0 and it may be difficult to recover /nðx0Þ from a numerical approximation.

Its modulus, on the other hand, is smooth and equal to Anðx0Þ.
We now investigate the recovery of the ray directions from the knowledge of the function Uað̂sÞ. The idea

is to remove the effect of the exponential factor by filtering and to calculate a function baðŝÞ that has distinct
peaks in the ray directions.

In the following sections we will drop the explicit dependence on x0 also in the notation for d̂n and Bn.

2.2. 2-D case

We introduce the angle notation: hn ¼ hðd̂nÞ and hðŝÞ such that

ŝ ¼ ðcos hðŝÞ; sin hðŝÞÞ; d̂n ¼ ðcos hn; sin hnÞ:
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Our basic tool is the 2-D Jacobi–Anger expansion (see [11, p. 66]):

eia ŝ�d̂n ¼ eia cosðhn�hðŝÞÞ ¼
X1
‘¼�1

i‘J‘ðaÞe�i‘ðhn�hðŝÞÞ; ð13Þ

where J‘ðaÞ is the Bessel function of order ‘. Inserting the Jacobi–Anger expansion into (12), we get an

expression for U ray
a ðŝÞ,

U ray
a ð̂sÞ ’

X1
‘¼�1

i‘J‘ðaÞ
XN
n¼1

Bn e
i‘ðhð̂sÞ�hnÞ

 !
: ð14Þ

We recall that a is the radius parameter scaled by the wavelength divided by 2p.
We need to truncate the series not only to keep the computational cost down, but also to avoid nu-

merical instabilities in the dividing operator, (17) below, when the terms in the series become small. In fact,

asymptotic analysis of the Bessel function, [11], reveals that when a is held fixed, J‘ðaÞ goes to zero more

than exponentially fast with j‘j for large enough j‘j. Indeed we have from [11]

J‘ðaÞ ¼ a‘

2‘‘!
1þO 1

‘

� �� �
; ‘ > 0;

J�‘ðaÞ ¼ ð�1Þ‘J‘ðaÞ:
ð15Þ

See Fig. 2 for an illustration.

When a is not too large, say a < 100, the series can be truncated at a threshold j‘j6 LðaÞ; the following
heuristic estimate of the threshold can be found in [10]:

LðaÞ ¼ aþ C1a
1
3 þ C2 logðaþ pÞ; ð16Þ
−30 −20 −10 0 10 20 30
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Fig. 2. The Bessel function J‘ðaÞ as a function of ‘ for fixed a ¼ 10. Stars indicates values for integers ‘.
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where C1 ¼ 5 and C2 ¼ 0 is proposed to achieve single precision accuracy (error less than 10�6) and C1 ¼ 10

for double precision. This law is valid for moderate values of a. When a is larger than 30, Song and Chew

[22] give the semiempirical law C1 ¼ 0, C2 ¼ 1:8d2=3
0 where d0 is the desired number of accurate digits. Other

studies about the proper choice of LðaÞ can be found in [21,30].

We now introduce the space of Fourier coefficients

l2 ¼ c‘;

(
�1 < ‘ < 1;

X1
‘¼�1

jc‘j
2
< 1

)
;

and let F : L2ðS1Þ ! l2 be the Fourier transform

FAð̂sÞ
� �

‘
:¼ 1ffiffiffiffiffiffi

2p
p

Z
S1
AðŝÞe�i‘hð̂sÞ drðŝÞ;

with inverse

F�1c
� �

ðŝÞ ¼ 1ffiffiffiffiffiffi
2p

p
X
‘

c‘ e
i‘hðŝÞ:

Let Da : l2 ! l2 be the dividing operator

Dacð Þ‘ :¼ da
‘ c‘; da

‘ ¼
2p

2LðaÞþ1
1

i‘J‘ðaÞ
; j‘j6 LðaÞ;

0; otherwise;

�
ð17Þ

where we assume that J‘ðaÞ 6¼ 0 for j‘j6 LðaÞ. We then define the function

ba :¼ F�1DaFUa;

or, more explicitly,

baðŝÞ ¼
1ffiffiffiffiffiffi
2p

p
XLðaÞ

‘¼�LðaÞ
da
‘ FUað Þ‘ ei‘hð̂sÞ: ð18Þ

Similarly, with bray
a ¼ F�1DaFU ray

a where U ray
a is given in (12), we easily obtain

bray
a ðŝÞ ¼

XN
n¼1

Bn

2LðaÞ þ 1

XLðaÞ
‘¼�LðaÞ

ei‘ðhn�hð̂sÞÞ

or,

bray
a ðŝÞ ¼

XN
n¼1

BnSaðhðŝÞ � hnÞ; SaðhÞ ¼
sin ½2LðaÞ þ 1�h=2ð Þ
½2LðaÞ þ 1� sin h=2ð Þ : ð19Þ

We close this section with a short analysis of the function bray
a ðŝÞ. Suppose first that only one ray exists, i.e.

N ¼ 1. Clearly, Sað0Þ ¼ 1 and therefore

bray
a ðd̂1Þ ¼ B1:

Moreover,

jSaðhÞj6
1

½2LðaÞ þ 1�j sinðh=2Þj ; h 6¼ 0; ð20Þ
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so bray
a ðŝÞ goes to zero when a goes to infinity and ŝ 6¼ d̂1.We get a similar results when there aremany rays. Let

Sepðh; nÞ ¼
sin h�hn

2

� �		 		
jBnj

;

measure how well a ray in direction h is separated from ray n, weighted by the amplitude. We then have

jbray
a ðŝÞ � BnSaðhð̂sÞ � hnÞj6

N � 1

2LðaÞ þ 1
max
m6¼n

1

SepðhðŝÞ;mÞ ð21Þ

by (19) and (20). Taking ŝ ¼ d̂n shows that for a large enough, we have b
ray
a ðd̂nÞ ’ Bn. From (19) and (20) we

also get that bray
a ðŝÞ ’ 0 for large a when ŝ 6¼ d̂n, since

bray
a ðŝÞ

			 			6 N
2LðaÞ þ 1

max
m

1

Sepðh;mÞ ; ŝ 6¼ d̂n; 8n: ð22Þ

We have hence shown that for a fixed ŝ

lim
a!1

bray
a ð̂sÞ ¼ Bn; ŝ ¼ d̂n;

0; otherwise:

�
ð23Þ

This analysis shows that we can expect the above filtering procedure to give as output a function baðŝÞ, defined
on the sphere, which has sharp peaks in the directions of propagation of the rays when a is large enough.

Remark 1. The baðŝÞ function plays the same role here as the Wigner transform Wkðx; nÞ [4,15,24] does in
many other analyses of high frequency wave phenomena: it captures the local strength of waves propa-

gating in different directions at an observation point x ¼ x0. When uk is of the form in (5) the corresponding

Wigner transform converges (weakly) with k to the Wigner measure W , given by

W ðx; nÞ ¼
XN
n¼1

A2
nðxÞdðn�r/nðxÞÞ; ð24Þ

which should be compared with (23). In fact, since ð2LðaÞ þ 1ÞSa is the classical LðaÞth Dirichlet kernel, and
LðaÞ ! 1 with a, we will also have

ð2LðaÞ þ 1Þbray
a ðŝÞ *

XN
n¼1

Bndðŝ� d̂nÞ

as a ! 1. The limit of Wkðx0; gŝÞ, although more singular, is clearly related to the limit of baðŝÞ. Both give

information about the local wave directions in the form of r/n and d̂n. However, the limit of baðŝÞ also
contains information about the phases at the observation point x0 via the complex amplitudes Bn, while W
only includes the amplitudes An ¼ jBnj. Moreover, baðŝÞ is much more amenable to numerical computa-

tions: it is computed from values locally around the observation point and it converges strongly (in a) to a

bounded limit by (23). The Wigner transform, on the other hand, includes a non-local Fourier transform
and it converges only weakly (in k) to a measure.
2.3. 3-D case

The situation in three dimensions is very similar to the two-dimensional case discussed above and we

take the same steps to obtain a three-dimensional version of baðŝÞ. We start from the 3-D Jacobi–Anger

expansion (see [11, p. 31])
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eiaŝ�d̂ ¼
X1
‘¼0

i‘ð2‘þ 1Þj‘ðaÞP‘ðd̂ � ŝÞ; ð25Þ

or

eiaŝ�d̂ ¼
X1
‘¼0

X‘
m¼�‘

4pi‘j‘ðaÞY‘;mðŝÞY‘;mðd̂Þ: ð26Þ

In those expressions, several special functions appear:

• j‘ðvÞ, the spherical Bessel function of order ‘. It is linked to the Bessel function via

j‘ðtÞ ¼
ffiffiffiffi
p
2t

r
J‘þ1

2
ðtÞ: ð27Þ

• P‘ðxÞ, the Legendre polynomial of order ‘:

P0ðxÞ ¼ 1; P1ðxÞ ¼ x;
ð‘þ 1ÞP‘þ1ðxÞ � ð2‘þ 1ÞxP‘ðxÞ þ ‘P‘�1ðxÞ ¼ 0:

�
Two important properties of these polynomials are [25,26]

P‘ðxÞ6 1; 8x 2 ½�1; 1�; ð28Þ
P‘ðxÞ6
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð2‘þ 1Þ
p 1

ð1� x2Þ
1
4

; 8x 2� � 1; 1½: ð29Þ

• Y m
‘ ðŝÞ, the spherical harmonics of non-negative index ‘ and of momentum m, where m varies from �‘ to

‘; the set fY‘;mðŝÞgjmj6 ‘<1 forms a complete orthonormal system in L2ðS2Þ. Let h;u be the spherical angles

defined for ŝ ¼ ðs1; s2; s3ÞT 2 S2 by the expressions

ŝ1ðh;uÞ ¼ cosu sin h; ŝ2ðh;uÞ ¼ sinu sin h; ŝ3ðh;uÞ ¼ cos h:

In these coordinates the spherical harmonics are given by

Y m
‘ ðh;uÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2‘þ 1

4p
ð‘� jmjÞ!
ð‘þ jmjÞ!

s
P jmj
‘ ðcos hÞeimu; ð30Þ

where Pm
‘ ðtÞ are the associated Legendre functions defined by

Pm
‘ ðxÞ ¼ ð1� x2Þ

m
2
dmP‘ðxÞ
dxm

; mP 0:

The equivalence between (25) and (26) comes from the additional formula

ð2‘þ 1ÞP‘ðd̂ � ŝÞ ¼ 4p
X‘
m¼�‘

Y m
‘ ð̂sÞY m

‘ ðd̂Þ: ð31Þ

Inserting the Jacobi–Anger expansion (26) into (12), we get

U ray
a ð̂sÞ ¼

X1
‘¼0

X‘
m¼�‘

4pi‘j‘ðaÞ
XN
n¼1

BnY m
‘ ð bdnÞ

 !
Y m
‘ ðŝÞ:
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As in 2-D, it can be shown that if a is not too large, say a < 100, the Jacobi–Anger series can be truncated

at j‘j less than LðaÞ, see (16). The constants C1 and C2 can be chosen approximatively as in the 2-D case,

although the truncation error in the Jacobi–Anger series increases slightly when going from 2-D to 3-D [30].
Next, we introduce the space of spherical Fourier coefficients

l2sphere ¼ c‘;m; 0

(
6 ‘ < 1;� ‘6m6 þ ‘;

X1
‘¼0

X‘
m¼�‘

jc‘;mj
2
< 1

)
;

and let Fsphere : L2ðS2Þ ! l2sphere be the mapping

FsphereA
� �

‘;m
:¼
Z
S2
AðŝÞY m

‘ ðŝÞdrðŝÞ; ð32Þ

with inverse

F�1
spherec

� �
ðŝÞ ¼

X1
‘¼0

X‘
m¼�‘

c‘;mY
m
‘ ðŝÞ:

Moreover, assuming that j‘ðaÞ 6¼ 0 for j‘j6 LðaÞ, we introduce the dividing operator Da : l2sphere ! l2sphere,
given by

Dacð Þ‘;m :¼ da
‘ c‘;m; da

‘ ¼
4p

ðLðaÞþ1Þ2
1

4pi‘j‘ðaÞ
; ‘6 LðaÞ;

0; otherwise:

�
We then define the three-dimensional ba-function

ba ¼ F�1
sphereDaFsphereUa:

Hence,

baðŝÞ ¼
XLðaÞ
‘¼0

X‘
m¼�‘

da
‘ FsphereUa

� �
‘;m
Y m
‘ ðŝÞ: ð33Þ

For the ray solution (12) we get

bray
a ðŝÞ ¼ F�1

sphereDaFsphereU ray
a

� �
ðŝÞ ¼

XN
n¼0

Bn
4p

ðLðaÞ þ 1Þ2
XLðaÞ
‘¼0

X‘
m¼�‘

Y m
‘ ðd̂nÞY m

‘ ðŝÞ:

Using (31) we get a convenient expression for bray
a of the same form as in two dimensions,

bray
a ðŝÞ ¼

XN
n¼0

BnSaðŝ � d̂nÞ; SaðrÞ ¼
XLðaÞ
‘¼0

2‘þ 1

ðLðaÞ þ 1Þ2
P‘ðrÞ:

To analyze this expression for bray
a , let us first assume that there is only one ray, i.e. N ¼ 1. Since P‘ð1Þ ¼ 1,

for all ‘, we get Sað1Þ ¼ 1 and consequently,

bray
a ðd̂1Þ ¼ B1:

When �16 r < 1, we can use (29) to get the estimate

jSaðrÞj6
2ffiffiffi

p
p

1� r2ð Þ
1
4ðLðaÞ þ 1Þ2

XLðaÞ
‘¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2‘þ 1

p
;



J.-D. Benamou et al. / Journal of Computational Physics 199 (2004) 717–741 727
which implies that there exists a pure constant C such that

jSaðrÞj6
C

1� r2ð Þ
1
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðaÞ þ 1

p ; r 2� � 1; 1½: ð34Þ

Therefore, bray
a ð̂sÞ

		 		 goes to zero when ŝ 6¼ d̂n and a goes to infinity. As in two dimensions, we can extend the

analysis to multiple rays. Let

Sepðŝ; nÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ŝ � d̂n

� �2r
jBnj2

:

This measures how well a ray in direction ŝ is separated from ray n, weighted by the amplitude. Inserted in

(34) we have

jSaðŝ � d̂nÞj6
C

jBnj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sepðŝ; nÞ½LðaÞ þ 1

p
�
; ŝ 6¼ d̂n:

The estimates in three dimensions that correspond to (21) and (22) now follows easily,

jbray
a ðd̂nÞ � Bnj6

N � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðaÞ þ 1

p max
m 6¼n

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sepðd̂n;mÞ

q
and

bray
a ðŝÞ

			 			6 Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðaÞ þ 1

p max
m

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sepðŝ;mÞ

p ŝ 6¼ d̂n; 8n:

Hence for a large enough, bray
a ðd̂nÞ ’ Bn and bray

a ðŝÞ ’ 0 when ŝ 6¼ d̂n. The limit as a goes to infinity is the

same as the two-dimensional case given in (23). The analysis hence confirms that the three-dimensional ba

defined on the sphere is also a function with sharp peaks in the ray directions when a is large enough.
3. Algorithm and numerical results in 2-D

The numerical algorithm is broken up into several steps. The key to finding the unknown number of

rays, their complex amplitudes and directions is the function ba introduced in Section 2. As was seen there,

this function will be close to zero away from the dominant ray directions, and have a value close to the
complex amplitude Bn in the direction of ray n. In our algorithm, we therefore first compute a numerical

approximation of baðŝÞ on a uniform discretization of the unit circle, possibly including a regularization

procedure. Second, we analyze the numerical results to find a preliminary set of ray directions and am-

plitudes. Finally, we post-process this set via a non-linear optimization procedure to get a more accurate

result.

3.1. Approximation of ba

We want to approximate the function baðŝÞ numerically in order to determine the directions and am-

plitudes of the rays. As was discussed in Section 2, this function should have strong maxima in the di-

rections of the rays. Moreover, the value of ba itself in these directions approximates the corresponding

complex amplitudes. The algorithm is straightforward, using the fast Fourier transform.
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Introduce a uniform grid f~hmg with M P 2LðaÞ þ 1 points on the unit circle,

~hm ¼ mDh; Dh ¼ 2p
M

; m ¼ 0; . . . ;M � 1: ð35Þ

Then let f ~Umg be the grid function that samples the given function UaðŝÞ in the grid points,

~Um ¼ Uað~dmÞ; ~dm ¼ ðcos ~hm; sin ~hmÞ: ð36Þ

Assuming Ua is well-approximated by its Fourier interpolant in those points we can then compute an

approximation of ba as follows:

fÛ‘g ¼ FFT ~Um

n o
; fbmg ¼ FFT�1 da

‘ Û‘

n o
; bað~hmÞ ’ bm;

where da
‘ was defined in (17). This is the discrete version of the F�1DaF operator of Section 2. Since the

frequencies Û‘ are multiplied by the divisors da
‘ which vanish for ‘ 62 ½�LðaÞ; LðaÞ�, it is also clear that there

is no point in taking M > 2LðaÞ þ 1. Therefore, we take precisely

M ¼ 2LðaÞ þ 1; ð37Þ

and finally get

fbmg ¼ 2pFFT�1
FFT ~Um

n o
ð2LðaÞ þ 1Þi‘J‘ðaÞ

8<:
9=;: ð38Þ

We end up with only one free parameter, a, which specifies both the radius of the observation circle around

x0 and the truncation and discretization parameters according to (16) and (37).

Remark 2.Going back to the original assumptions (11) and (12), we see that with the same discretization as

above, they reduce to the linear system of equations

~U‘ ¼
XM�1

m¼0

~bm eia
~d‘ �~dm ; ‘ ¼ 0; . . . ;M � 1:

The system matrix is a circulant matrix and as an alternative we could solve it directly at a comparable cost,

OðM logMÞ [17]. However, the condition number of this matrix rapidly deteriorates when M grows, and

also in this case one finds that the problem becomes very ill-conditioned if M > 2LðaÞ þ 1. The FFT-based

Jacobi–Anger inversion is in fact a stabilized, approximation (bm � ~bm) of the standard fast way to solve

this circulant matrix problem.
3.2. Tichonov regularisation

The previous subsection gives a rule how to safely truncate the Jacobi–Anger series. We can then

get rid of the small values of the Bessel functions when ‘ ! �1. This is very important as the step

(38) of the algorithm involves a division by J‘ðaÞ and we indeed assumed on this occasion that

J‘ðaÞ 6¼ 0. This last condition can be violated as Bessel functions as functions of a for instance have

zeros and we cannot guarantee that a is not close to or exactly one of them, cf. Fig. 2. If the

truncation is too large the exponential decay can also lead to very small coefficients that impair the

precision of formula (38).
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A simple solution to this problem is to use a Tichonov type regularization. Let us write the last step in

the FFT algorithm, fbmg ¼ FFT�1fÛ‘da
‘ g, as a linear system with b ¼ fbmg as the unknown,

Gb ¼ Û ; G ¼ fg‘mg; g‘m ¼ ð2LðaÞ þ 1Þi‘J‘ðaÞe�i‘~hm ; Û ¼ fÛ‘g:
It is clear that zeros of the Bessel function J‘ may be a problem for the numerical resolution of this system.

So, instead we propose to solve the ‘‘regularized’’ system

ðG�Gþ eIÞbe ¼ G�Û ;

where I is the identity matrix. The inversion formula (38) becomes

fbemg ¼ 2pFFT�1 Û‘ð2LðaÞ þ 1ÞJ‘ðaÞ
i‘½ð2LðaÞ þ 1Þ2J‘ðaÞ2 þ 4ep2�

( ) !
ð39Þ

and remains correct even when J‘ðaÞ is zero or close to zero.

The exact Tichonov regularization would consist in choosing e such that the relative error between the

actual and regularized problem is smaller than a prescribed precision (an optimization problem must then

be solved).

3.3. Preliminary processing and accuracy

Let bmin be a given tolerance parameter. A simple way to determine a relevant number of ray directions
from our approximation of ba is to check directions ~hm for which the corresponding bm coefficient satisfies

jbmj > jbm�1j; jbmj > jbmþ1j; jbmj > bmin:

Hence, we select all local maxima in m whose amplitudes are sufficiently large. Suppose that we get ~N ’ N
directions, ~hm, with m ¼ m1; . . . ;m~N . Close to hn we know that baðŝðhÞÞ ’ BnSaðh� hnÞ by (21) in Section 2.

Therefore, assuming that hn ¼ ~hmn þ gDh for some g 2 ð�1; 1Þ,

bmn ’ BnSað~hmn � hnÞ ¼ Bn
sin gpð Þ

M sin gp
M

� � ’ Bn
sin gpð Þ

gp
: ð40Þ

We then get

bmn

bmnþ1

’ ðg� 1Þp sin gpð Þ
gp sin ðg� 1Þpð Þ ¼

1� g
g

;

and consequently,

g ’ bmnþ1

bmn þ bmnþ1

:

We hence compute the preliminary ray directions and complex amplitudes as

~g ¼ R
bmnþ1

bmn þ bmnþ1


 �
; hpreln ¼ ~hmn þ ~gDh; Bprel

n ¼ bmn~gp
sinð~gpÞ

and conclude that, close to x ¼ x0,

ukðxÞ ’
X~N
n¼1

Bprel
n eikgðx0Þðx�x0Þ�d̂preln ; d̂prel

n ¼ ðcos hpreln ; sin hpreln Þ:
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We can thus efficiently compute an approximate set of ray directions and complex amplitudes through

the FFT-based algorithm and the simple selection algorithm above. There are a number of error sources in

this computation that we need to be aware of:
1. High frequency approximation in (8).

2. Linearization in (10).

3. Approximation of UaðŝÞ using M samples in (36).

4. Approximation of ba locally by a sinc function in (40).

The contribution from the first error source decreases with the frequency. The second error source in-

creases with a and decreases with frequency. By the scaling of Ua, the effect of the remaining sources are

independent of the frequency. Error source three obviously decreases with increasing M . The last source

decreases with increasing a and increases when the rays are not well separated by (21). In total, we thus have
a method for which the accuracy improves when the frequency increases, and the amount of work is held

fixed (fixed a, M).

For reasonably high frequencies the last two sources dominate, and since M ¼ 2LðaÞ þ 1 by (37), only

the free parameter a determines the accuracy. In general the larger the observation circle, the finer the

discretization and the better the accuracy of our result. This is the limitation in the localization of our

procedure: there is no hope to recover the direction of the rays at a single point without information in a

neighborhood which allows for some correlations. If, however, the neighborhood exceeds the domain of

validity of the local plane wave approximation (4) then the ‘‘ansatz’’ assumption (6) may not be relevant
anymore. Note that for a sum of plane waves only the last two sources contribute to the error.

3.4. Post-processing

As already discussed, the precision of our method is limited by the size of the ‘‘observation’’ circle

around x0 and this may be a severe restriction. So we propose here a post-processing procedure where the

data obtained from the spectral inversion is used as initial data for a routine that tries to fit the expansion

(12) directly to the sampled solution values. This is done by non-linear minimization of the residual. The
accuracy of the rays’ complex amplitudes and directions can then be significantly improved.

We define the residuals

rm ¼ ~Um �
X~N
n¼1

�Bn e
ia~dm��dn ; m ¼ 0; . . . ;M � 1;

where r ¼ ðr0; . . . ; rM�1ÞT 2 CM depends on the parameters �Bn and �dn. For the correct choice of those pa-

rameters, the residual should be small by our assumptions. We thus try to minimize the norm of r by

varying the parameters,

min
�Bn;�dn;

krk:

We solve this non-linear problem with the standard Gauss–Newton minimization algorithm, using the

preliminary values as starting values

�B0
n ¼ Bprel

n ; �d0
n ¼ d̂prel

n ; n ¼ 1; . . . ; ~N :

Usually a few iterations gives a dramatic improvement in the accuracy of the results (see Section 3.5.2). We

denote the post-processed result Bpost
n and hpostn .

Note that this optimization procedure requires good starting values to converge. The preliminary results

must therefore be fairly accurate. By the discussion in the previous section, this means that we need to take

a sufficiently large a (i.e. M) when we compute the preliminary results, and that it must be larger when the
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rays are not well separated. Also note that the magnitude of the final residual after minimization is a

measure of the quality of the GO approximation at the frequency k.
In the post-processing one could also use other points than those on the observation circle, if they are

readily available. One could possibly also include higher order terms in the linearization (10) to reduce the

error from source two, in the Section 3.3 discussion.

3.5. Numerical results in 2-D

3.5.1. Point sources solutions in homogeneous space g ¼ 1

We consider the following source points problem

Duk þ k2uk ¼
XN
n¼1

4i
ffiffiffi
k

p
andxn : ð41Þ

The dirac masses are centered at the source points ðxnÞ, modulated by the amplitudes ðanÞ and normalized

such that the solution is given as the sum of Hankel functions with decaying amplitudes (asymptotically

independent of k), centered at points xn:
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Fig. 3. Numerical approximation of jba ð̂sðhÞÞj with k ¼ 104, a=2p ¼ 1:5 and M ¼ 55 and variable number of sources N . Stars indicate

the exact asymptotic values of jBnj and hn when k ! 1.
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ukðxÞ ¼
XN
n¼1

an
ffiffiffi
k

p
H 1

0 ðkjx� xnjÞ:

We want to recover ray directions and complex amplitudes at the observation point ð0; 0Þ. Let us specify the
source points in polar coordinates xn ¼ ðRn cos �hn;Rn sin �hnÞ. For large t ¼ kr we have

H 1
0 ðtÞ ’ ei t�p

4ð Þ
ffiffiffiffiffi
2

tp

r
;

and we therefore take

Bn ¼ an

ffiffiffiffiffiffiffiffi
2

Rnp

s
exp i kRn

��
� p

4

��
; hn ¼ �hn þ p;

as the ‘‘exact’’, asymptotic complex amplitude value and ray directions. The wavenumber in these com-

putations was k ¼ 104.

In Fig. 3 we show the result obtained for different number of source points. The computed amplitudes

(vertical axis) are plotted as a function of the angle (horizontal axis). The stars indicate the exact angles and

asymptotic amplitudes ðhn; jBnjÞ at the observation point. We used a=2p ¼ 1:5. Upon simplifying (16) into
LðaÞ ¼ aþ 8 logðaÞ this corresponds to M ¼ 55.

The case with five sources is further illustrated in Fig. 4, where the real part of the actual solution is

plotted together with the observation circle and a polar plot of jbaj.
Fig. 5 shows the nine source case when computed with variable size a of the observation circle. It is clear

that the precision of the predicted ray directions increases with a, as expected.
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Fig. 4. Example in Fig. 3 with five sources, a=2p ¼ 1:5, M ¼ 55 and k ¼ 104. Figure (a) shows a contour plot of the real part of the

solution ukðxÞ with the observation circle jx� x0j ¼ a=k and its discretization superimposed. Figure (b) shows a polar plot of the

numerical approximation of jba ð̂sðhÞÞj.
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3.5.2. Post-processing and convergence analysis

One drawback of the basic method is the constraint which links the angle discretization with the size of

the circle on which we sample the solution. This circle should not be too large, since the first order Taylor

expansion of the phase and amplitude around the observation point deteriorates when the radius of the

observation circle gets large. Moreover, we may have to retrieve GO components near scattering bodies.

Hence the idea (explained) in Section 3.4 to apply the algorithm on a discretization of angles that is coarse,

but still sufficient to identify the number of rays N and an approximate set of ray directions and complex

amplitudes. Then this approximate solution is used as the initial data for a non-linear inversion method.

A typical improvement in the results after post-processing is given in Table 1 where the results of the five
source case is given in more detail, before and after post-processing. The error is reduced by a factor of

hundred for this problem.

In Fig. 6, a more systematic convergence study is made for the same problem. There, the maximum error

in the ray directions, hn, the complex amplitudes, Bn and the modulus of the amplitudes An ¼ jBnj are
plotted as a function of a (	the observation circle radius) as well as of k (	the frequency). Both the error in

the preliminary results and the post-processed results are shown.



Table 1

Test problem with five sources, k ¼ 104, a=2p ¼ 1:5, M ¼ 55

n Exact hn Preliminary Post-processed

hpreln jhpreln � hnj hpostn jhpostn � hnj

Ray directions

1 1.25 1.2530 0.297
 10�2 1.249921 0.79
 10�4

2 1.70 1.7116 1.158
 10�2 1.699656 3.44
 10�4

3 3.00 3.0038 0.379
 10�2 2.999926 0.74
 10�4

4 3.40 3.4008 0.079
 10�2 3.399936 0.64
 10�4

5 5.30 5.2990 0.096
 10�2 5.299990 0.10
 10�4

Complex amplitudes

n Bn Bprel
n jBprel

n � Bnj Bpost
n jBpost

n � Bnj

1 �1:7788þ 0:9143i �1:7794þ 0:7861i 0.1283 �1:7796þ 0:9103i 4.15
 10�3

2 0:3141þ 0:9494i 0:2637þ 0:8550i 0.1070 0:3141þ 0:9514i 1.99
 10�3

3 2:9596� 0:4905i 2:9851� 0:2068i 0.2848 2:9581� 0:4887i 2.34
 10�3

4 �0:0358� 3:9998i �0:3082� 3:9398i 0.2790 �0:0332� 4:0022i 3.47
 10�3

5 �4:9465� 0:7292i �4:9423� 0:8172i 0.0882 �4:9465� 0:7335i 4.35
 10�3
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In Fig. 6(a) one can see that the preliminary results improve with a. The post-processed results are much

more accurate, but worsen with a. Also note that the accuracy of An is much better than that of Bn. Fig. 6(b)
shows that the preliminary results are essentially independent of frequency, while the post-processed results

improve markedly for higher frequencies.

Our interpretation of the results is that for the preliminary directions and amplitudes, the last two error

sources discussed in Section 3.3 dominate. Post-processing eliminates these error sources, and the error

after post-processing only comes from the first two sources.

3.5.3. Scattering by a hard disk

We apply our complete procedure (Jacobi–Anger inversion+non-linear post-processing) to the scat-
tering of a plane wave by a hard disk of radius a ¼ 1 and center at the origin. In this case the input is the

exact scattered solution uk given by the formula [6, p. 376],

ukðxÞ ¼ eikr cos h �
Xþ1

l¼�1
ik

J‘ðkaÞ
H ð1Þ

‘ ðkaÞ
eilhH ð1Þ

‘ ðkrÞ;

where x ¼ rðcos h; sin hÞ and J‘ðtÞ, H ð1Þ
‘ ðtÞ are respectively the Bessel and Hankel function of the first kind.

(In practice, this series is truncated to the ‘ which modulus are less than some number larger than k.)
The asymptotic solution can be described in terms of rays [7]:

• The incident rays associated to the plane wave arriving from the left.

• Rays reflected symmetrically with respect to the normal to the disk (see Fig. 7(a)).

• Diffracted rays, which after reaching the disk tangentially, creep on its surface and then initiate tangent

rays at all subsequent points of its boundary (see Fig. 7(b)).

We used our numerical method to compute these reflected and diffracted rays, with k ¼ 100, a ¼ 5 and

M ¼ 37. Fig. 7 shows the results at a collection of points below and just behind the disk. The arrows
indicate the numerically computed directions of the rays and the length of the arrows are scaled according

the computed amplitudes. The dashed lines follow the exact direction of the reflected and the diffracted

rays.
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We now select point (1.2,0.15) where diffraction can be observed and try to estimate the frequency

dependence of the amplitude numerically. We indeed know [23] that at such points the amplitude of a

diffracted ray behaves as

AðkÞ ¼ C1k�
1
6e�C2ðk2Þ

1
3 ;

where C1 and C2 are frequency independent constants. So we select a ray and compute the amplitudes for

values of k going from 100 to 1000, using a ¼ 10 for all computations. In Fig. 8 we plot the function
4 5 6 7 8 9 10
–6.5

–6

–5.5

–5

–4.5

–4

–3.5

–3

Fig. 8. Frequency dependence of the diffracted amplitude. Horizontal axis: k
1
3. Vertical axis: logðjAðkÞjk1

6Þ, where AðkÞ has been

computed by the algorithm.
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k
1
3 7! logðjAjk1

6Þ ¼ logC1 � C2

k
2

� �1
3

;

and as expected, a linear behavior is obtained.

3.5.4. Fold caustic solution in heterogeneous medium

The algorithm is local and also works for inhomogeneous media where the index of refraction g is not

constant. As we need to compute an Helmholtz solution for possibly large values of k we choose an example

where the index only depends on one of the Cartesian coordinate x ¼ ðx1; x2Þ, namely

gðxÞ ¼
1
2
ðcosðpx1Þ þ 1Þ; x1 2�0; 2½;
1; otherwise:

�
One can then apply the method of separation of variables. We search for a solution that is an incident plane

wave expðik cos ax1 þ sin ax2Þ plus a diffracted wave of the form udðxÞ ¼ ~uðx1Þ expðikx2 sin aÞ where ~u satisfies
the 1-D Helmholtz equation

d2~u
dx21

ðx1Þ þ k2ðg2ðx1Þ � sin2 aÞ~uðx1Þ ¼ k2ð1� g2ðx1ÞÞ: ð42Þ

Away from the zone of varying index x1 2�0; 2½ we can derive exact transparent boundary conditions for ~u
and discretize (42) using a finite difference method on a bounded domain. Even using direct inversion of the
matrix makes it possible to take k as large as 100 for 10 discretization points per wavelength.
Fig. 9. Rays near a caustic.
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The initialization process therefore consists in computing the Helmholtz solution on a 2-D finite dif-

ference grid as explained above. Then the input to our numerical method simply is a linear 2-D interpo-

lation between those points to estimate the solution on a circle around the observation point. We show in
Fig. 9 the output (using a ¼ 10) at a collection of points approaching the caustic, superimposed on the real

part of the Helmholtz solution. The arrows again indicate the numerically computed directions of the rays

and the length of the arrows are scaled according the amplitudes. In this situation (see [5]) geometrical

optics predicts two rays with phases satisfying the Eikonal equations

/�
x2
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � /�

x1

q
: ð43Þ

Based on (43), the directions of the rays are easily found and are represented by the dashed lines in Fig. 9.

The results also show an increase of the amplitude as we approach the caustic which is consistent with the

GO model.
4. Algorithm and numerical results in 3-D

In this section we indicate how the 2-D algorithm can be generalized to the 3-D case.

4.1. Approximation of ba

The approximation of the three-dimensional ba in (33) is done in essentially the same way is in two

dimensions. The main difference is that for practical reasons we cannot compute the spherical Fourier

coefficients exactly. Instead we use a quadrature rule on the sphere to evaluate the integral in (32) when we
compute the coefficients.

The quadrature rule is chosen such that the spherical harmonics of order less than 2LðaÞ are integrated
exactly. There are several possible ways to achieve that. Considering that drð̂sÞ ¼ sin

hdhdu ¼ d coshdu ¼ dy du, we use Gauss–Legendre quadrature in the y variable and the trapezoidal rule

in the (periodic) u variable. The Gauss–Legendre rule has Nh ¼ LðaÞ þ 1 nodes in the points

fyigNh�1

i¼0 � ½�1; 1�. The corresponding angles are hi ¼ arccos yi and we denote the corresponding weights by

xi
h. For the trapezoidal rule, we use Nu ¼ 2ðLðaÞ þ 1Þ equidistant nodes fujg

Nu�1

j¼0 � ½0; 2p�, where

uj ¼ 2pj=Nu. The corresponding weights are simply xj
u ¼ 2p=Nu. The quadrature rule then reads

F ð̂sÞdrð̂sÞ :¼
XNh�1

i¼0

XNu�1

j¼0

xj
ux

i
hF ŝðhi;ujÞ
� �

:

Assuming that we can sample the solution via the function Uað̂sÞ in the points ŝ ¼ ŝðhi;ujÞ, we can then use

the rule to approximate the spherical Fourier coefficients, in (33) as

FsphereUa

� �
‘;m

’ UaðŝÞY m
‘ ð̂sÞdrð̂sÞ:

Once these are computed, formula (33) is used to evaluate baðŝÞ. Like in two dimensions, the procedure may

need to be regularized. The processing steps in Sections 3.3 and 3.4 could also be extended to three di-

mensions in the obvious way.

4.2. Numerical results in 3-D

We consider a simple problem: the solution to the Helmholtz equation in a homogeneous domain with
two point sources.
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ukðxÞ ¼ a1
jxs1jeikjx�xs

1
j

jx� xs1j
þ a2

jxs2jeikjx�xs
2
j

jx� xs2j
:

We observe the solution at the origin, x0 ¼ 0. When k is large we obtain two rays with

Anðx0Þ ¼ an; d̂nðx0Þ ¼ � xsn
jxsnj

; n ¼ 1; 2:

We choose the amplitudes a1 ¼ 1, a2 ¼ 1
2
, the source locations xs1 ¼ ð1; 0; 0Þ, xs2 ¼ 1ffiffi

3
p ð1; 1; 1Þ and the

wavenumber k ¼ 104. The results are displayed in Fig. 10. The algorithm seems to be able to reconstruct the

angles of propagation, and the resolution improves with a.
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Fig. 10. Function jba ð̂sÞj for two point sources of amplitudes 1 and 0:5 and various values of a; the source locations xs1 ¼ ð1; 0; 0Þ,
xs2 ¼ 1ffiffi

3
p ð1; 1; 1Þ, the observation point x0 ¼ ð0; 0; 0Þ and the wavenumber k ¼ 104.
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5. Conclusion

We presented an algorithm which given a fixed frequency domain solution in a local neighborhood of an
‘‘observation’’ point computes its GO asymptotic representation around this point. The algorithm is cheap:

OðM logMÞ operations is needed, where M is the number of data samples of the Helmholtz solution on a

small circle around the observation point. This number depends on the radius of the circle through (37), but

it is independent of the frequency. A larger number is necessary to obtain convergence when the separation

between rays is small. The accuracy of the method increases with the frequency. It is easy to implement and

can be applied both for heterogeneous and homogeneous media. A remarkable feature is its ability to

capture diffracted rays.

Integral equation method are well suited for frequency domain calculations in homogeneous media. For
scattering problem the solution is given as currents (i.e. functions defined) on the boundary of the scattering

object. If the input to our method is given in that form there is a way to reduce the cost of the expensive

integral field calculations needed to evaluate the solution locally around the observation point. The am-

plitude coefficients can indeed be expressed as Herglotz waves (see [11]) which only depend on the currents.

This approach will be explained in a forthcoming paper.
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